Genome-Wide Characterization and Expression Analysis of CsPALs in Cucumber (Cucumis sativus L.) Reveal Their Potential Roles in Abiotic Stress and Aphid Stress Tolerance

Author:

Gu Jieni1,Sohail Hamza1ORCID,Qiu Lei1,Chen Chaoyan1,Yue Haoyu1,Li Ziyi1,Yang Xiaodong1,Zhang Lili1

Affiliation:

1. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China

Abstract

Phenylalanine ammonia lyase (PAL) is a pivotal enzyme in the phenylalanine metabolic pathway in plants and has a crucial role in the plant’s response to environmental stress. Although the PAL family has been widely studied in many plant species, limited is known about its particular role in cucumbers under stress. We investigated the physicochemical properties, gene structure, gene duplication events, conserved motifs, cis-acting elements, protein interaction networks, stress-related transcriptome data, and quantitatively validated key stress-related genes. The main results indicated that 15 PAL genes were grouped into four clades: I, II, and III when arranged in a phylogenetic tree of PAL genes in angiosperms. The analysis of the promoter sequence revealed the presence of multiple cis-acting elements related to hormones and stress responses in the cucumber PAL genes (CsPALs). The analysis of protein interaction networks suggested that CsPAL1 interacts with eight other members of the PAL family through CsELI5 and CsHISNA, and directly interacts with multiple proteins in the 4CL family. Further investigation into the expression patterns of CsPAL genes in different tissues and under various stress treatments (NaCl, Cu2+, Zn2+, PEG6000, aphids) demonstrated significant differential expression of CsPALs across cucumber tissues. In summary, our characterization of the CsPAL family offers valuable insights and provides important clues regarding the molecular mechanisms of CsPALs in managing abiotic and biotic stress interactions in cucumbers.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3