Affiliation:
1. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
Abstract
Phenylalanine ammonia lyase (PAL) is a pivotal enzyme in the phenylalanine metabolic pathway in plants and has a crucial role in the plant’s response to environmental stress. Although the PAL family has been widely studied in many plant species, limited is known about its particular role in cucumbers under stress. We investigated the physicochemical properties, gene structure, gene duplication events, conserved motifs, cis-acting elements, protein interaction networks, stress-related transcriptome data, and quantitatively validated key stress-related genes. The main results indicated that 15 PAL genes were grouped into four clades: I, II, and III when arranged in a phylogenetic tree of PAL genes in angiosperms. The analysis of the promoter sequence revealed the presence of multiple cis-acting elements related to hormones and stress responses in the cucumber PAL genes (CsPALs). The analysis of protein interaction networks suggested that CsPAL1 interacts with eight other members of the PAL family through CsELI5 and CsHISNA, and directly interacts with multiple proteins in the 4CL family. Further investigation into the expression patterns of CsPAL genes in different tissues and under various stress treatments (NaCl, Cu2+, Zn2+, PEG6000, aphids) demonstrated significant differential expression of CsPALs across cucumber tissues. In summary, our characterization of the CsPAL family offers valuable insights and provides important clues regarding the molecular mechanisms of CsPALs in managing abiotic and biotic stress interactions in cucumbers.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province