Defining Populations and Predicting Future Suitable Niche Space in the Geographically Disjunct, Narrowly Endemic Leafy Prairie-Clover (Dalea foliosa; Fabaceae)

Author:

Morris Ashley B.12ORCID,Visger Clayton J.3,Fox Skyler J.14,Scalf Cassandra2,Fleming Sunny5,Call Geoff6

Affiliation:

1. Department of Biology, Furman University, Greenville, SC 29613, USA

2. Independent Researcher, San Antonio, TX 78247, USA

3. Department of Biological Sciences, California State University, Sacramento, CA 95819, USA

4. Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA

5. Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA 92373, USA

6. Tennessee Ecological Services Field Office, U.S. Fish and Wildlife Service, Cookeville, TN 38501, USA

Abstract

Conservation actions for rare species are often based on estimates of population size and number, which are challenging to capture in natural systems. Instead, many definitions of populations rely on arbitrarily defined distances between occurrences, which is not necessarily biologically meaningful despite having utility from a conservation management perspective. Here, we introduce a case study using the narrowly endemic and highly geographically disjunct leafy prairie-clover (Dalea foliosa), for which we use nuclear microsatellite loci to assess the current delimitations of populations and management units across its entire known range. We model future potential suitable niche space for the species to assess how currently defined populations could fare under predicted changes in climate over the next 50 years. Our results indicate that genetic variation within the species is extremely limited, particularly so in the distal portions of its range (Illinois and Alabama). Within the core of its range (Tennessee), genetic structure is not consistent with populations as currently defined. Our models indicate that predicted suitable niche space may only marginally overlap with the geology associated with this species (limestone glades and dolomite prairies) by 2070. Additional studies are needed to evaluate the extent to which populations are ecologically adapted to local environments and what role this could play in future translocation efforts.

Funder

U.S. Fish and Wildlife Service

MTSU Undergraduate Research Experience and Creative Activity (URECA) Committee

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3