Genome-Wide Analysis of MYB Gene Family in Chrysanthemum ×morifolium Provides Insights into Flower Color Regulation

Author:

Wang Bohao1,Wen Xiaohui2,Fu Boxiao1,Wei Yuanyuan1,Song Xiang1,Li Shuangda1,Wang Luyao1,Wu Yanbin1,Hong Yan1,Dai Silan1

Affiliation:

1. Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China

2. Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou 311251, China

Abstract

MYBs constitute the second largest transcription factor (TF) superfamily in flowering plants with substantial structural and functional diversity, which have been brought into focus because they affect flower colors by regulating anthocyanin biosynthesis. Up to now, the genomic data of several Chrysanthemum species have been released, which provides us with abundant genomic resources for revealing the evolution of the MYB gene family in Chrysanthemum species. In the present study, comparative analyses of the MYB gene family in six representative species, including C. lavandulifolium, C. seticuspe, C. ×morifolium, Helianthus annuus, Lactuca sativa, and Arabidopsis thaliana, were performed. A total of 1104 MYBs, which were classified into four subfamilies and 35 lineages, were identified in the three Chrysanthemum species (C. lavandulifolium, C. seticuspe, and C. ×morifolium). We found that whole-genome duplication and tandem duplication are the main duplication mechanisms that drove the occurrence of duplicates in CmMYBs (particularly in the R2R3-MYB subfamily) during the evolution of the cultivated chrysanthemums. Sequence structure and selective pressure analyses of the MYB gene family revealed that some of R2R3-MYBs were subjected to positive selection, which are mostly located on the distal telomere segments of the chromosomes and contain motifs 7 and 8. In addition, the gene expression analysis of CmMYBs in different organs and at various capitulum developmental stages of C. ×morifolium indicated that CmMYBS2, CmMYB96, and CmMYB109 might be the negative regulators for anthocyanin biosynthesis. Our results provide the phylogenetic context for research on the genetic and functional evolution of the MYB gene family in Chrysanthemum species and deepen our understanding of the regulatory mechanism of MYB TFs on the flower color of C. ×morifolium.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Undergraduate Training Program for Innovation and Entrepreneurship, Beijing Forestry University

Publisher

MDPI AG

Reference101 articles.

1. Current achievements and future prospects in the genetic breeding of chrysanthemum: A review;Su;Hortic. Res.,2019

2. High-density genetic map construction and identification of loci controlling flower-type traits in Chrysanthemum (Chrysanthemum × morifolium Ramat.);Song;Hortic. Res.,2020

3. The chrysanthemum lavandulifolium genome and the molecular mechanism underlying diverse capitulum types;Wen;Hortic. Res.,2022

4. Advanced research in plant systematics of Chrysanthemum spp. and origin of the chrysanthemums;Dai;J. Beijing For. Univ.,2002

5. Genome analysis and their phylogenetic relationships of several wild species of Dendranthema in China;Chen;Acta Hortic Sin.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3