Transcriptome Profiles Reveals ScDREB10 from Syntrichia caninervis Regulated Phenylpropanoid Biosynthesis and Starch/Sucrose Metabolism to Enhance Plant Stress Tolerance

Author:

Liang Yuqing123ORCID,Li Xiaoshuang123ORCID,Lei Feiya14,Yang Ruirui123,Bai Wenwan14,Yang Qilin14ORCID,Zhang Daoyuan123ORCID

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan 838008, China

3. Conservation and Utilization of Plant Gene Resources, Key Laboratory of Xinjiang, Urumqi 830011, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Desiccation is a kind of extreme form of drought stress and desiccation tolerance (DT) is an ancient trait of plants that allows them to survive tissue water potentials reaching −100 MPa or lower. ScDREB10 is a DREB A-5 transcription factor gene from a DT moss named Syntrichia caninervis, which has strong comprehensive tolerance to osmotic and salt stresses. This study delves further into the molecular mechanism of ScDREB10 stress tolerance based on the transcriptome data of the overexpression of ScDREB10 in Arabidopsis under control, osmotic and salt treatments. The transcriptional analysis of weight gene co-expression network analysis (WGCNA) showed that “phenylpropanoid biosynthesis” and “starch and sucrose metabolism” were key pathways in the network of cyan and yellow modules. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes (DEGs) also showed that “phenylpropanoid biosynthesis” and “starch and sucrose metabolism” pathways demonstrate the highest enrichment in response to osmotic and salt stress, respectively. Quantitative real-time PCR (qRT-PCR) results confirmed that most genes related to phenylpropanoid biosynthesis” and “starch and sucrose metabolism” pathways in overexpressing ScDREB10 Arabidopsis were up-regulated in response to osmotic and salt stresses, respectively. In line with the results, the corresponding lignin, sucrose, and trehalose contents and sucrose phosphate synthase activities were also increased in overexpressing ScDREB10 Arabidopsis under osmotic and salt stress treatments. Additionally, cis-acting promoter element analyses and yeast one-hybrid experiments showed that ScDREB10 was not only able to bind with classical cis-elements, such as DRE and TATCCC (MYBST1), but also bind with unknown element CGTCCA. All of these findings suggest that ScDREB10 may regulate plant stress tolerance by effecting phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways. This research provides insights into the molecular mechanisms underpinning ScDREB10-mediated stress tolerance and contributes to deeply understanding the A-5 DREB regulatory mechanism.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences Special Research Assistant Project

Tianchi Doctor Program in the Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3