Exogenous Sodium and Calcium Alleviate Drought Stress by Promoting the Succulence of Suaeda salsa

Author:

Zhang Dong12,Tian Changyan1,Mai Wenxuan1

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Succulence is a key trait involved in the response of Suaeda salsa to salt stress. However, few studies have investigated the effects of the interaction between salt and drought stress on S. salsa growth and succulence. In this study, the morphology and physiology of S. salsa were examined under different salt ions (Na+, Ca2+, Mg2+, Cl−, and SO42−) and simulated drought conditions using different polyethylene glycol concentrations (PEG; 0%, 5%, 10%, and 15%). The results demonstrate that Na+ and Ca2+ significantly increased leaf succulence by increasing leaf water content and enlarging epidermal cell size compared to Mg2+, Cl−, and SO42−. Under drought (PEG) stress, with an increase in drought stress, the biomass, degree of leaf succulence, and water content of S. salsa decreased significantly in the non-salt treatment. However, with salt treatment, the results indicated that Na+ and Ca2+ could reduce water stress due to drought by stimulating the succulence of S. salsa. In addition, Na+ and Ca2+ promoted the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which could reduce oxidative stress. In conclusion, Na+ and Ca2+ are the main factors promoting succulence and can effectively alleviate drought stress in S. salsa.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

National Key Research and Development Program of China

Major Project of Chinese Agriculture Ministry

Publisher

MDPI AG

Reference76 articles.

1. Genetic analysis of plant salt tolerance using Arabidopsis;Zhu;Plant Physiol.,2000

2. Mechanisms of high salinity tolerance in plants;Tuteja;Methods Enzymol.,2007

3. Mechanisms of Salinity Tolerance;Munns;Annu. Rev. Plant Biol.,2008

4. Plant salt tolerance;Zhu;Trends Plant Sci.,2001

5. Improving crop salt tolerance;Flowers;J. Exp. Bot.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3