Physiological Responses to Salt Stress at the Seedling Stage in Wild (Oryza rufipogon Griff.) and Cultivated (Oryza sativa L.) Rice

Author:

Trotti Jacopo1,Trapani Isabella2,Gulino Federica1ORCID,Aceto Maurizio1ORCID,Minio Miles3,Gerotto Caterina3,Mica Erica1ORCID,Valè Giampiero1ORCID,Barbato Roberto1ORCID,Pagliano Cristina2ORCID

Affiliation:

1. Department for Sustainable Development and Ecological Transition, University of Eastern Piedmont, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy

2. Department of Science and Technological Innovation, University of Eastern Piedmont, Viale Teresa Michel 5, 15121 Alessandria, Italy

3. Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy

Abstract

Domesticated rice Oryza sativa L. is a major staple food worldwide, and the cereal most sensitive to salinity. It originated from the wild ancestor Oryza rufipogon Griff., which was reported to possess superior salinity tolerance. Here, we examined the morpho-physiological responses to salinity stress (80 mM NaCl for 7 days) in seedlings of an O. rufipogon accession and two Italian O. sativa genotypes, Baldo (mildly tolerant) and Vialone Nano (sensitive). Under salt treatment, O. rufipogon showed the highest percentage of plants with no to moderate stress symptoms, displaying an unchanged shoot/root biomass ratio, the highest Na+ accumulation in roots, the lowest root and leaf Na+/K+ ratio, and highest leaf relative water content, leading to a better preservation of the plant architecture, ion homeostasis, and water status. Moreover, O. rufipogon preserved the overall leaf carbon to nitrogen balance and photosynthetic apparatus integrity. Conversely, Vialone Nano showed the lowest percentage of plants surviving after treatment, and displayed a higher reduction in the growth of shoots rather than roots, with leaves compromised in water and ionic balance, negatively affecting the photosynthetic performance (lowest performance index by JIP-test) and apparatus integrity. Baldo showed intermediate salt tolerance. Being O. rufipogon interfertile with O. sativa, it resulted a good candidate for pre-breeding towards salt-tolerant lines.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3