Sugarcane/Soybean Intercropping with Reduced Nitrogen Application Synergistically Increases Plant Carbon Fixation and Soil Organic Carbon Sequestration

Author:

Zhang Tantan12,Liu Yali3,Li Lin4ORCID

Affiliation:

1. College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China

2. Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, Yongzhou 425199, China

3. College of Natural Resources and Environmental, South China Agricultural University, Guangzhou 510642, China

4. College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572000, China

Abstract

Sugarcane/soybean intercropping and reduced nitrogen (N) application as an important sustainable agricultural pattern can increase crop primary productivity and improve soil ecological functions, thereby affecting soil organic carbon (SOC) input and turnover. To explore the potential mechanism of sugarcane/soybean intercropping affecting SOC sequestration, a two-factor long-term field experiment was carried out, which included planting pattern (sugarcane monocropping (MS), sugarcane/soybean 1:1 intercropping (SB1), and sugarcane/soybean 1:2 intercropping (SB2)) and nitrogen addition levels (reduced N application (N1: 300 kg·hm−2) and conventional N application (N2: 525 kg·hm−2)). The results showed that the shoot and root C fixation in the sugarcane/soybean intercropping system were significantly higher than those in the sugarcane monocropping system during the whole growth period of sugarcane, and the N application level had no significant effect on the C fixation of plants in the intercropping system. Sugarcane/soybean intercropping also increased the contents of total organic C (TOC), labile organic C fraction [microbial biomass C (MBC) and dissolved organic C (DOC)] in the soil during the growth period of sugarcane, and this effect was more obvious at the N1 level. We further analyzed the relationship between plant C sequestration and SOC fraction content using regression equations and found that both plant shoot and root C sequestration were significantly correlated with TOC, MBC, and DOC content. This suggests that sugarcane/soybean intercropping increases the amount of C input to the soil by improving crop shoot and root C sequestration, which then promotes the content of each SOC fraction. The results of this study indicate that sugarcane/soybean intercropping and reduced N application patterns can synergistically improve plant and soil C fixation, which is of great significance for improving crop yields, increasing soil fertility, and reducing greenhouse gas emissions from agricultural fields.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3