CIRCADIAN CLOCK-ASSOCIATED1 Delays Flowering by Directly Inhibiting the Transcription of BcSOC1 in Pak-choi

Author:

He Ying12,Xiao Dong1,Jiang Cheng12,Li Yiran12,Hou Xilin12ORCID

Affiliation:

1. National Key Laboratory of Crop Genetics & Germplasm Innovation and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China

2. Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China

Abstract

Flowering is critical to the success of plant propagation. The MYB family transcription factor CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) is an essential component of the core loop of the circadian clock and plays a crucial role in regulating plant flowering time. In this study, we found that photoperiod affects the expression pattern and expression level of BcCCA1, which is delayed flowering time under short-day conditions in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. We detected overexpression and silencing of BcCCA1 in Pak-choi, resulting in delayed and promoted flowering time, respectively. Furthermore, we also discovered that FLOWERING LOCUS C (BcFLC) and SUPPRESSOR OF CONSTANS1 (BcSOC1) were expressed significantly differently in BcCCA1 overexpression and silencing plants compared with control plants. Therefore, we further investigated the interaction relationship between BcCCA1, BcFLC, and BcSOC1, and the results showed that BcCCA1 and BcFLC as a complex interacted with each other. Moreover, both BcCCA1 and BcFLC can directly bind to the promoter of BcSOC1 and repress its transcription, and BcCCA1 can form a complex with BcFLC to enhance the transcriptional inhibition of BcSOC1 by BcFLC. This study reveals a new mechanism by which the circadian clock regulates flowering time.

Funder

Jiangsu Seed Industry Revitalization Project

Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3