Agrobacterium Transformation of Tea Plants (Camellia sinensis (L.) KUNTZE): A Small Experiment with Great Prospects

Author:

Fizikova Anastasia12ORCID,Subcheva Elena1ORCID,Kozlov Nikolay3ORCID,Tvorogova Varvara13,Samarina Lidia12,Lutova Ludmila13,Khlestkina Elena14

Affiliation:

1. Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia

2. Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, 2/28, Yana Fabritsiusa Street, 354002 Sochi, Russia

3. Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia

4. N.I. Vavilov All-Russian Research Institute of Plant Genetic Resources (VIR), B. Morskaya Street, 42-44, 190000 St. Petersburg, Russia

Abstract

Tea has historically been one of the most popular beverages, and it is currently an economically significant crop cultivated in over 50 countries. The Northwestern Caucasus is one of the northernmost regions for industrial tea cultivation worldwide. The domestication of the tea plant in this region took approximately 150 years, during which plantations spreading from the Ozurgeti region in northern Georgia to the southern city of Maykop in Russia. Consequently, tea plantations in the Northern Caucasus can serve as a source of unique genotypes with exceptional cold tolerance. Tea plants are known to be recalcitrant to Agrobacterium-mediated transfection. Research into optimal transfection and regeneration methodologies, as well as the identification of tea varieties with enhanced transformation efficiency, is an advanced strategy for improving tea plant culture. The aim of this study was to search for the optimal Agrobacterium tumefaciens-mediated transfection protocol for the Kolkhida tea variety. As a result of optimizing the transfection medium with potassium phosphate buffer at the stages of pre-inoculation, inoculation and co-cultivation, the restoration of normal morphology and improvement in the attachment of Agrobacterium cells to the surface of tea explants were observed by scanning electron microscopy. And an effective method of high-efficiency Agrobacteria tumefaciens-mediated transfection of the best local tea cultivar, Kolkhida, was demonstrated for the first time.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3