Effect of Picloram and Desiccation on the Somatic Embryogenesis of Lycium barbarum L.

Author:

Khatri Poonam1ORCID,Joshee Nirmal1ORCID

Affiliation:

1. Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030, USA

Abstract

An efficient and reproducible in vitro method for indirect somatic embryogenesis was optimized by culturing leaf and leaf with petiole explants of Lycium barbarum L. Murashige and Skoog (MS) medium, supplemented with various concentrations of Picloram and 2,4-Dichlorophenoxyacetic acid (2,4-D), individually and in combinations, were tested. Picloram (1.0 µM) showed a better response compared to 2,4-D and results indicate it to be a better auxin for induction of somatic embryos for Goji berry. It was seen that the leaf explants were more responsive in callus and somatic embryo induction than the leaf with petiole explant when incubated in the dark for 5 weeks. Embryogenic callus, after being transferred to MS medium containing Benzyl amino purine (BAP) in 1.0 µM, 5.0 µM and 10.0 µM, began to differentiate in light after one week. MS medium with 1.0 µM Picloram + 10 µM BAP resulted as the most favorable treatment for somatic embryogenesis in Lycium barbarum L. Removal of plant growth regulators from MS medium and culturing induced calluses under 16 h photoperiod resulted in globular, heart, torpedo, cotyledons, and further development into plantlets. Well-developed plants have been obtained and are capable of acclimatizing in ex vitro conditions. In addition, the effects of desiccation treatments (0, 1, 3, 6, 9 h, and 12 h) on embryogenic callus for somatic embryo induction were found to be directly proportional to the length of desiccation treatment at room temperature. After 9 h and 12 h of desiccation treatments, 60% and 90% of plated calluses resulted in somatic embryos, respectively. In a L. barbarum callus mass, Acetocarmine and Evans blue double staining differentiated between embryogenic and non-embryogenic callus. These findings will help Goji berry improvement by elite clone production, ex situ conservation projects, scaling up plant production, and agronomy for the commercial production of this superfruit in the future.

Funder

USDA NIFA, Evans Allen project GEOX 5220

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3