Halotolerant Endophytic Bacteria Regulate Growth and Field Performance of Two Durum Wheat Genotypes with Contrasting Salinity Tolerance Potential

Author:

Albdaiwi Randa1,Al-Sayaydeh Rabea2ORCID,Al-Rifaee Mohammad K.3,Alhindi Tareq45,Ashraf Muhammad67ORCID,Al-Abdallat Ayed M.7ORCID

Affiliation:

1. Department of Allied Medical Sciences, Zarqa University College, Al-Balqa Applied University, Al-Salt 19117, Jordan

2. Department of Agriculture Sciences, Faculty of Shoubak College, Al-Balqa Applied University, Al-Salt 19117, Jordan

3. National Agricultural Research Center (NARC), Amman 19381, Jordan

4. Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan

5. Hamdi Mango Center for Scientific Research (HMCSR), The University of Jordan, Amman 11942, Jordan

6. Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan

7. Department of Horticulture and Crop Science, Faculty of Agriculture, The University of Jordan, Amman 11942, Jordan

Abstract

Soil salinity hampers durum wheat plant growth and development at various stages. The detrimental effects of salinity on plant cellular and physiological processes necessitate strategies to alleviate its negative impact and improve overall crop yield. This study investigates the efficacy of plant growth-promoting rhizobacteria (PGPR) bacteria inoculation in mitigating salinity stress on two durum wheat genotypes with contrasting degrees of salinity tolerance (Tamaroi, salt-sensitive and Line 5004, salt-tolerant) under greenhouse and field conditions. For this purpose, two halotolerant-PGPR strains, Pseudomonas jordanii strain G34 and Oceanobacillus jordanicus strain GSFE11, were utilized for the inoculation. For the greenhouse experiment, the two selected genotypes were subjected to salinity at the flag leaf stage with continuous irrigation with a Hoagland solution supplemented with 50 mM NaCl. Field experiments were conducted across two locations with contrasting salinity levels over two growing seasons. At the end of both experiments, various parameters including total weight, spike weight, grain weight, spike number, spikelet number, grains per spike and thousand kernel weight were measured. The halotolerant PGPRs, P. jordanii strain G34 and O. jordanicus strain GSFE11, proved effective in alleviating salinity-induced adverse effects and enhancing growth under greenhouse and field conditions. However, bacterial inoculation significantly improved growth in the salt-sensitive genotype and such effects were not observed in the tolerant genotype, emphasizing genotype-specific responses. Notably, inoculation with O. jordanicus increased Na+ and Ca2+ uptake in the salt-tolerant “Line 5004” without hindering growth, suggesting one of its potential mechanisms for salt tolerance. This research demonstrates the potential of halotolerant-PGPR inoculation in enhancing durum wheat production in saline environments, but also underscores the importance of understanding genotype-specific responses for tailored interventions.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3