Genome-Wide Characterization of Glyceraldehyde-3-Phosphate Dehydrogenase Genes and Their Expression Profile under Drought Stress in Quercus rubra

Author:

Lim Hyemin1ORCID,Denison Michael Immanuel Jesse2ORCID,Lee Kyungmi1,Natarajan Sathishkumar2ORCID,Kim Tae-Lim1ORCID,Oh Changyoung1

Affiliation:

1. Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea

2. 3BIGS Company Limited, Hwaseong 18469, Republic of Korea

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is crucial in plant metabolism and responses to various abiotic stresses. In the glycolysis pathway, glyceraldehyde-3-phosphate (G3P) is oxidized to 1,3-bisphosphate glycerate (1,3-BPG) through the catalytic action of GAPDH. However, the GAPDH gene family in Quercus rubra has been minimally researched. In this study, we identified 13 GAPDH-encoding genes in Q. rubra through a bioinformatics analysis of genomic data. Evolutionary studies suggest that these QrGAPDH genes are closely related to those in Glycine max and Triticum aestivum. We conducted a comprehensive whole-genome study, which included predictions of subcellular localization, gene structure analysis, protein motif identification, chromosomal placement, and analysis of cis-acting regions. We also examined the expression of GAPDH proteins and genes in various tissues of Q. rubra and under drought stress. The results indicated diverse expression patterns across different tissues and differential expression under drought conditions. Notably, the expression of Qurub.02G290300.1, Qurub.10G209800.1, and Qrub.M241600.1 significantly increased in the leaf, stem, and root tissues under drought stress. This study provides a systematic analysis of QrGAPDH genes, suggesting their pivotal roles in the drought stress response of trees.

Funder

National Institute of Forest Science of the Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3