Genome-Wide Identification of bZIP Transcription Factors in Cymbidium ensifolium and Analysis of Their Expression under Low-Temperature Stress

Author:

Lai Huiping1,Wang Mengyao1,Yan Lu1,Feng Caiyun1,Tian Yang1,Tian Xinyue2,Peng Donghui1,Lan Siren1,Zhang Yanping2,Ai Ye1ORCID

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Anhui Province Key Laboratory of Forest Resources and Silviculture, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China

Abstract

The basic leucine zipper (bZIP) transcription factors constitute the most widely distributed and conserved eukaryotic family. They play crucial roles in plant growth, development, and responses to both biotic and abiotic stresses, exerting strong regulatory control over the expression of downstream genes. In this study, a genome-wide characterization of the CebZIP transcription factor family was conducted using bioinformatic analysis. Various aspects, including physicochemical properties, phylogenetics, conserved structural domains, gene structures, chromosomal distribution, gene covariance relationships, promoter cis-acting elements, and gene expression patterns, were thoroughly analyzed. A total of 70 CebZIP genes were identified from the C. ensifolium genome, and they were randomly distributed across 18 chromosomes. The phylogenetic tree clustered them into 11 subfamilies, each exhibiting complex gene structures and conserved motifs arranged in a specific order. Nineteen pairs of duplicated genes were identified among the 70 CebZIP genes, with sixteen pairs affected by purifying selection. Cis-acting elements analysis revealed a plethora of regulatory elements associated with stress response, plant hormones, and plant growth and development. Transcriptome and qRT-PCR results demonstrated that the expression of CebZIP genes was universally up-regulated under low temperature conditions. However, the expression patterns varied among different members. This study provides theoretical references for identifying key bZIP genes in C. ensifolium that confer resistance to low-temperature stress, and lays the groundwork for further research into their broader biological functions.

Funder

Natural Science Foundation of Anhui Province

National Key Research and Development Program of China

Outstanding Young Scientific Research Talent Project of Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3