Identification of Ossnrk1a−1 Regulated Genes Associated with Rice Immunity and Seed Set

Author:

Cao Yingying1ORCID,Lu Minfeng1,Chen Jinhui1,Li Wenyan1,Wang Mo2ORCID,Chen Fengping13ORCID

Affiliation:

1. Fujian Universities Key Laboratory for Plant-Microbe Interaction, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China

3. Key Laboratory of Biopesticides and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Sucrose non-fermenting–1-related protein kinase–1 (SnRK1) is a highly conserved serine–threonine kinase complex regulating plants’ energy metabolisms and resistance to various types of stresses. However, the downstream genes regulated by SnRK1 in these plant physiological processes still need to be explored. In this study, we found that the knockout of OsSnRK1a resulted in no obvious defects in rice growth but notably decreased the seed setting rate. The ossnrk1a mutants were more sensitive to blast fungus (Magnaporthe oryzae) infection and showed compromised immune responses. Transcriptome analyses revealed that SnRK1a was an important intermediate in the energy metabolism and response to biotic stress. Further investigation confirmed that the transcription levels of OsNADH-GOGAT2, which positively controls rice yield, and the defense-related gene pathogenesis-related protein 1b (OsPR1b) were remarkably decreased in the ossnrk1a mutant. Moreover, we found that OsSnRK1a directly interacted with the regulatory subunits OsSnRK1β1 and OsSnRK1β3, which responded specifically to blast fungus infection and starvation stresses, respectively. Taken together, our findings provide an insight into the mechanism of OsSnRK1a, which forms a complex with specific β subunits, contributing to rice seed set and resistance by regulating the transcription of related genes.

Funder

National Natural Science Foundation of China

Fujian Provincial Science and Technology Key Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3