Growth and Physiological Characteristics of Strawberry Plants Cultivated under Greenhouse-Integrated Semi-Transparent Photovoltaics

Author:

Petrakis Theodoros1ORCID,Ioannou Paraskevi2ORCID,Kitsiou Foteini3ORCID,Kavga Angeliki1ORCID,Grammatikopoulos George3,Karamanos Nikos24ORCID

Affiliation:

1. Department of Agriculture, University of Patras, 26504 Patras, Greece

2. Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece

3. Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece

4. Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 26504 Patras, Greece

Abstract

The integration of semi-transparent photovoltaics into the roof of greenhouses is an emerging technique used in recent years, due to the simultaneous energy and food production from the same piece of land. Although shading in many cases is a solution to maintain the desired microclimate, in the case of photovoltaic installations, the permanent shading of the crop is a challenge, due to the importance of light to the growth, morphogenesis, and other critical physiological processes. In this study, the effect of shade from semi-transparent photovoltaics on a strawberry crop (Fragaria x ananassa Duch.) was examined, in terms of growth and quality (phenolic and flavonoid concentration of fruits). According to the results, in non-shaded plants, there was a trend of larger plants, but without a significant change in leaf number, while the total number of flowers was slightly higher at the end of the cultivation period. Moreover, it was found that the percentage change between the number of ripe fruits was smaller than that of the corresponding change in fruit weight, implying the increased size of the fruits in non-shaded plants. Finally, regarding the antioxidant capacity, it was clearly demonstrated that shading increased the total phenolic content, as well as the free-radical-scavenging activity of the harvested fruits. Although the shading from the semi-transparent photovoltaics did not assist the production of large fruits, it did not affect their number and increased some of their quality characteristics. In addition, the advantageous impact of the semi-transparent photovoltaics in the energy part must not be neglected.

Funder

the Research Council of the University of Patras

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3