Genetic and Epigenetic Responses of Autochthonous Grapevine Cultivars from the ‘Epirus’ Region of Greece upon Consecutive Drought Stress

Author:

Maniatis Grigorios1,Tani Eleni1ORCID,Katsileros Anastasios1,Avramidou Evangelia V.2ORCID,Pitsoli Theodora3,Sarri Efi1ORCID,Gerakari Maria1ORCID,Goufa Maria1,Panagoulakou Maria1,Xipolitaki Konstantina1,Klouvatos Kimon1,Megariti Stamatia1,Pappi Polixeni4ORCID,Papadakis Ioannis E.5ORCID,Bebeli Penelope J.1,Kapazoglou Aliki3

Affiliation:

1. Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

2. Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Ilisia, 11528 Athens, Greece

3. Department of Vitis, Institute of Olive Tree, Subtropical Crops and Viticulture (IOSV), Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Lykovrysi, 14123 Athens, Greece

4. Laboratory of Plant Virology, Department of Viticulture, Vegetable Crops, Floriculture and Plant Protection, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization DIMITRA (ELGO-DIMITRA), Kastorias 32A, Mesa Katsampas, 71307 Heraklion, Crete, Greece

5. Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

Abstract

Within the framework of preserving and valorizing the rich grapevine germplasm of the Epirus region of Greece, indigenous grapevine (Vitis vinifera L.) cultivars were characterized and assessed for their resilience to abiotic stresses in the context of climate change. The cultivars ‘Debina’ and ‘Dichali’ displayed significant differences in their response to drought stress as judged by morpho-physiological analysis, indicating higher drought tolerance for Dichali. Hence, they were selected for further study aiming to identify genetic and epigenetic mechanisms possibly regulating drought adaptability. Specifically, self-rooted and heterografted on ‘Richter 110’ rootstock plants were subjected to two phases of drought with a recovery period in between. Gene expression analysis was performed for two stress-related miRNAs and their target genes: (a) miRNA159 and putative targets, VvMYB101, VvGATA-26-like, VvTOPLESS-4-like and (b) miRNA156 and putative target gene VvCONSTANS-5. Overall, grafted plants exhibited a higher drought tolerance than self-rooted plants, suggesting beneficial rootstock–scion interactions. Comparative analysis revealed differential gene expression under repetitive drought stresses between the two cultivars as well as between the self-rooted and grafted plants. ‘Dichali’ exhibited an up-regulation of most of the genes examined, which may be associated with increased tolerance. Nevertheless, the profound down-regulation of VvTOPLESS-4-like (a transcriptional co-repressor of transcription factors) upon drought and the concomitant up-regulation of miRNA159 highlights the importance of this ‘miRNA-target’ module in drought responsiveness. DNA methylation profiling using MSAP analysis revealed differential methylation patterns between the two genotypes in response to drought. Further investigations of gene expression and DNA methylation will contribute to our understanding of the epigenetic mechanisms underlying grapevine tolerance to drought stress.

Funder

European Union

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3