Comparative Effects of Water Scarcity on the Growth and Development of Two Common Bean (Phaseolus vulgaris L.) Genotypes with Different Geographic Origin (Mesoamerica/Andean)

Author:

Galan Paula-Maria12,Ivanescu Lacramioara-Carmen1,Leti Livia-Ioana12,Zamfirache Maria Magdalena1,Gorgan Dragoș-Lucian1ORCID

Affiliation:

1. Faculty of Biology, Alexandru Ioan Cuza University, 700505 Iasi, Romania

2. Plant Genetic Resources Bank, 720224 Suceava, Romania

Abstract

Drought stress is widely recognized as a highly detrimental abiotic stress factor that significantly impacts crop growth, development, and agricultural productivity. In response to external stimuli, plants activate various mechanisms to enhance their resistance or tolerance to abiotic stress. The common bean, a most important legume according to the FAO, serves as a staple food for millions of people worldwide, due to its rich protein, carbohydrate, and fiber content, concurrently, and water scarcity is the main factor limiting common bean production. The process of domestication and on-farm conservation has facilitated the development of genotypes with varying degrees of drought stress resistance. Consequently, using landraces as biological material in research can lead to the identification of variants with superior resistance qualities to abiotic stress factors, which can be effectively integrated into breeding programs. The central scope of this research was to find out if different geographic origins of common bean genotypes can determine distinct responses at various levels. Hence, several analyses were carried out to investigate responses to water scarcity in three common bean genotypes, M-2087 (from the Mesoamerican gene pool), A-1988 (from the Andean gene pool) and Lechinta, known for its high drought stress resistance. Plants were subjected to different water regimes, followed by optical assessment of the anatomical structure of the hypocotyl and epicotyl in each group; furthermore, the morphological, physiological, and biochemical parameters and molecular data (quantification of the relative expression of the thirteen genes) were assessed. The three experimental variants displayed distinct responses when subjected to 12 days of water stress. In general, the Lechinta genotype demonstrated the highest adaptability and drought resistance. The M-2087 landrace, originating from the Mesoamerican geographic basin, showed a lower resistance to water stress, compared to the A-1988 landrace, from the Andean basin. The achieved results can be used to scale up future research about the drought resistance of plants, analyzing more common bean landraces with distinct geographic origins (Mesoamerican/Andean), which can then be used in breeding programs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3