Effects of Water and Nitrogen Regulation on Apple Tree Growth, Yield, Quality, and Their Water and Nitrogen Utilization Efficiency

Author:

Li Xingqiang123,Li Siqi123,Qiang Xiaolin123,Yu Zhao123,Sun Zhaojun123,Wang Rong4,He Jun23,Han Lei23,Li Qian23

Affiliation:

1. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China

2. China-Arab Joint International Research Laboratory for Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, China

3. Key Laboratory of Resource Assessment and Environmental Control in Arid Region of Ningxia, Yinchuan 750021, China

4. School of Mechanical Engineering, Ningxia Vocational Technical College of Industry & Commerce, Yinchuan 750021, China

Abstract

Apple tree productivity is influenced by the quantity of water and nutrients that are supplied during planting. To enhance resource utilization efficiency and optimize yields, a suitable strategy for supplying water and nitrogen must be established. A field experiment was conducted using a randomized block group design on five-year-old apple trees in Ningxia, with two irrigation lower limit levels (55%FC (W1) and 75%FC (W2)) and four N application levels (0 (N1), 120 (N2), 240 (N3), and 360 (N4) kg·ha−1). Our findings showed that leaf N content increased with a higher irrigation lower limit, but the difference was not statistically significant. However, the leaf N content significantly increased with increasing N application. The growth pattern of new shoots followed logistic curve characteristics, with the maximum new shoot growth rate and time of new shoot growth being delayed under high water and high nitrogen treatments. Apple yield and yield components (weight per fruit and number of fruits per plant) were enhanced under N application compared to no N application. The maximum apple yields were 19,405.3 kg·ha−1 (2022) and 29,607 kg·ha−1 (2023) at the N3 level. A parabolic relationship was observed between apple yield and N application level, with the optimal range of N application being 230–260 kg⸱ha−1. Apple quality indicators were not significantly affected by the irrigation lower limit but were significantly influenced by N application levels. The lower limit of irrigation did not have a significant impact on the quality indicators of the apples. Water and N utilization efficiencies improved with the W2 treatment at the same N application level. A negative relationship was observed between the amount of nitrogen applied and the biased productivity of nitrogen fertilizer. The utilization of nitrogen fertilizer was 127.6 kg·kg−1 (2022) and 200.3 kg·kg−1 (2023) in the W2N2 treatment. The apple yield was sustained, the quality of the fruit improved, and a substantial increase in water productivity was achieved with the W2N3 treatment. The findings of this study can be used as a reference for accurate field irrigation.

Funder

Ningxia Hui Autonomous Region Key Research and Development Plan Major Project

National Key Research and Development Plan Topics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3