Dynamic Simulation of the Leaf Mass per Area (LMA) in Multilayer Crowns of Young Larix principis-rupprechtii

Author:

Wang Jinshan1,Zhou Ying1,Ji Cuiying1,Xie Longfei2,Liu Qiang1ORCID,Zhang Zhidong1

Affiliation:

1. School of Forestry, Hebei Agriculture University, Baoding 071001, China

2. School of Forestry, Beihua University, Jilin 132013, China

Abstract

Leaf mass per area (LMA) is a key structural parameter that reflects the functional traits of leaves and plays a vital role in simulating the material and energy cycles of plant ecosystems. In this study, vertical whorl-by-whorl sampling of LMA was conducted in a young Larix principis-rupprechtii plantation during the growing season at the Saihanba Forest Farm. The vertical and seasonal variations in LMA were analysed. Subsequently, a predictive model of LMA was constructed. The results revealed that the LMA varied significantly between different crown whorls and growing periods. In the vertical direction of the crown, the LMA decreased with increasing crown depth, but the range of LMA values from the tree top to the bottom was, on average, 30.4 g/m2, which was approximately 2.5 times greater in the fully expanded phase than in the early leaf-expanding phase. During different growing periods, the LMA exhibited an allometric growth trend that increased during the leaf-expanding phase and then tended to stabilize. However, the range of LMA values throughout the growing period was, on average, 40.4 g/m2. Among the univariate models, the leaf dry matter content (LDMC) performed well (adjusted determination coefficient (Ra2) = 0.45, root mean square error (RMSE) = 13.48 g/m2) in estimating the LMA. The correlation between LMA and LDMC significantly differed at different growth stages and at different vertical crown whorls. The dynamic predictive model of LMA constructed with the relative depth in the crown (RDINC) and date of the year (DOY) as independent variables was reliable in both the assessments (Ra2 = 0.68, RMSE = 10.25 g/m2) and the validation (absolute mean error (MAE) = 8.05 g/m2, fit index (FI) = 0.682). Dynamic simulations of crown LMA provide a basis for elucidating the mechanism of crown development and laying the foundation for the construction of an ecological process model.

Funder

State Key Research and Development Programme

National Natural Science Foundation of China

Publisher

MDPI AG

Reference60 articles.

1. The worldwide leaf economics spectrum;Wright;Nature,2004

2. Assessing the generality of global leaf trait relationships;Wright;New Phytol.,2005

3. Global leaf trait relationships: Mass, area, and the leaf economics spectrum;Osnas;Science,2013

4. Research progress on leaf mass per area;Liu;Chin. J. Plant Ecol.,2016

5. Leaf Area Estimation Model and Specific Leaf Area of Chinese Pine;Diao;For. Res.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3