Meta-Analysis of the Effects of Overexpressed bZIP Transcription Factors in Plants under Drought Stress

Author:

Tao Ran1,Liu Yaqiu1,Chen Su2ORCID,Shityakov Sergey3ORCID

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

2. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China

3. Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia

Abstract

The bZIP (basic leucine zipper) transcription factors have been identified as key regulators of plant responses to drought stress, which limits plant growth and yield. Overexpression of bZIP genes has shown potential in enhancing drought tolerance in various plant species. However, the constrained types of individual studies and inconsistencies among experimental approaches has resulted in a lack of statistical significance and limited the extrapolation of bZIP transcription factor overexpression for plant improvement. We conducted a meta-analysis to evaluate ten measured parameters of drought tolerance in bZIP transcription factor-expressing plants as well as moderators affecting the performance of transgenic plants. The results showed that seven parameters, including survival rate as well as the content of regulatory substances (proline accumulation, H2O2 concentration, CAT activity, POD activity, SOD activity and MDA accumulation), were most affected while the impact on physiological status indicators is not significant. In addition, donor/recipient species, treatment medium, duration and methods of simulating drought stress all significantly impacted the degree of drought stress tolerance in plants to some extent among the considered moderators. The findings underscore the potential of bZIP transcription factors as key targets for genetic engineering approaches aimed at improving plant resilience to water scarcity.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3