Utilizing Two Populations Derived from Tropical Maize for Genome-Wide Association Analysis of Banded Leaf and Sheath Blight Resistance

Author:

Li Shaoxiong1,Jiang Fuyan2,Bi Yaqi2,Yin Xingfu2,Li Linzhuo1,Zhang Xingjie1,Li Jinfeng1,Liu Meichen1,Shaw Ranjan K.2,Fan Xingming2ORCID

Affiliation:

1. College of Agriculture, Yunnan University, Kunming 650500, China

2. Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, China

Abstract

Banded leaf and sheath blight (BLSB) in maize is a soil-borne fungal disease caused by Rhizoctonia solani Kühn, resulting in significant yield losses. Investigating the genes responsible for regulating resistance to BLSB is crucial for yield enhancement. In this study, a multiparent maize population was developed, comprising two recombinant inbred line (RIL) populations totaling 442 F8RILs. The populations were generated by crossing two tropical inbred lines, CML444 and NK40-1, known for their BLSB resistance, as female parents, with the high-yielding but BLSB-susceptible inbred line Ye107 serving as the common male parent. Subsequently, we utilized 562,212 high-quality single nucleotide polymorphisms (SNPs) generated through genotyping-by-sequencing (GBS) for a comprehensive genome-wide association study (GWAS) aimed at identifying genes responsible for BLSB resistance. The objectives of this study were to (1) identify SNPs associated with BLSB resistance through genome-wide association analyses, (2) explore candidate genes regulating BLSB resistance in maize, and (3) investigate pathways involved in BLSB resistance and discover key candidate genes through Gene Ontology (GO) analysis. The GWAS analysis revealed nineteen SNPs significantly associated with BLSB that were consistently identified across four environments in the GWAS, with phenotypic variation explained (PVE) ranging from 2.48% to 11.71%. Screening a 40 kb region upstream and downstream of the significant SNPs revealed several potential candidate genes. By integrating information from maize GDB and the NCBI, we identified five novel candidate genes, namely, Zm00001d009723, Zm00001d009975, Zm00001d009566, Zm00001d009567, located on chromosome 8, and Zm00001d026376, on chromosome 10, related to BLSB resistance. These candidate genes exhibit association with various aspects, including maize cell membrane proteins and cell immune proteins, as well as connections to cell metabolism, transport, transcriptional regulation, and structural proteins. These proteins and biochemical processes play crucial roles in maize defense against BLSB. When Rhizoctonia solani invades maize plants, it induces the expression of genes encoding specific proteins and regulates corresponding metabolic pathways to thwart the invasion of this fungus. The present study significantly contributes to our understanding of the genetic basis of BLSB resistance in maize, offering valuable insights into novel candidate genes that could be instrumental in future breeding efforts to develop maize varieties with enhanced BLSB resistance.

Funder

Xingdian Talent Support Program of Yunnan Province, National Natural Science Foundation of China

Seed Industry Joint Laboratory Project of Yunnan Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3