Metabolomic Response of Thalassiosira weissflogii to Erythromycin Stress: Detoxification Systems, Steroidal Metabolites, and Energy Metabolism

Author:

Wu Xintong1,Tong Yongqi1,Li Tong1,Guo Jiahua2,Liu Wenhua1,Mo Jiezhang1

Affiliation:

1. Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China

2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China

Abstract

Erythromycin, a macrolide antibiotic, is a prioritized pollutant that poses a high risk to environmental health. It has been detected in different environmental matrices and can cause undesired effects in aquatic organisms, particularly freshwater algae, which are primary producers. However, the impact of erythromycin on marine algae remains largely unexplored. Erythromycin has been reported to induce hormetic effects in the marine diatom Thalassiosira weissflogii (T. weissflogii). These effects are associated with the molecular pathways and biological processes of ribosome assembly, protein translation, photosynthesis, and oxidative stress. However, the alterations in the global gene expression have yet to be validated at the metabolic level. The present study used non-targeted metabolomic analysis to reveal the altered metabolic profiles of T. weissflogii under erythromycin stress. The results showed that the increased cell density was possibly attributed to the accumulation of steroidal compounds with potential hormonic action at the metabolic level. Additionally, slight increases in the mitochondrial membrane potential (MMP) and viable cells were observed in the treatment of 0.001 mg/L of erythromycin (an environmentally realistic level). Contrarily, the 0.75 and 2.5 mg/L erythromycin treatments (corresponding to EC20 and EC50, respectively) showed decreases in the MMP, cell density, and viable algal cells, which were associated with modified metabolic pathways involving ATP-binding cassette (ABC) transporters, the metabolism of hydrocarbons and lipids, thiamine metabolism, and the metabolism of porphyrin and chlorophyll. These findings suggest that metabolomic analysis, as a complement to the measurement of apical endpoints, could provide novel insights into the molecular mechanisms of hormesis induced by antibiotic agents in algae.

Funder

Shantou University STU Scientific Research Initiation

Program for the University Innovation Team of Guangdong Province

Science and Technology Planning Project of Guangdong Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3