Variation in Root Biomass and Distribution Based on the Topography, Soil Properties, and Tree Influence Index: The Case of Mt. Duryun in Republic of Korea

Author:

Carvalho Julia Inacio1,Carayugan Mark Bryan1ORCID,Tran Lan Thi Ngoc2ORCID,Hernandez Jonathan O.3ORCID,Youn Woo Bin1ORCID,An Ji Young4ORCID,Park Byung Bae1ORCID

Affiliation:

1. Department of Forest Resources, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea

2. Forest Environment and Geospatial Technology Research Institute, Sejong 30098, Republic of Korea

3. Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of Philippines, Laguna 4031, Philippines

4. Division of Environmental and Forest Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea

Abstract

Root biomass and distribution are influenced by abiotic factors, such as topography and soil physicochemical properties, determining belowground productivity. Hence, we investigated the variation in root biomass and vertical root distribution based on the topography, soil physicochemical properties, and tree influence index, and their relationships, across soil depths (0–10 cm, 10–20 cm, and 20–30 cm) and topographical gradients in a warm-temperate forest in Mt. Duryun, Republic of Korea. Two contrasting research sites were established: a lower slope oriented at ≤3° and an upper slope with a slope of 30°. Each site comprised eleven 400 m2 sampling plots from which root samples from various diameter classes (<2 mm, 2–5 mm, 5–10 mm, and >10 mm) were collected. While the bulk density increased with soil depth in the lower slope, the organic matter, available phosphorus, Ca2+, and Mg2+ showed a reversed pattern. Linear mixed-effects models generally revealed significant negative correlations between root biomass and soil pH, total nitrogen, and cation exchange capacity, particularly in small roots (βstd = −1.03 to −1.51) and coarse roots (βstd = −6.30). Root biomass exhibited a 10–15% increase in the upper slope compared to the lower slope, particularly in fine (median = 52.0 g m2–65.64 g m2) and medium roots (median = 56.04 g m2–69.52 g m2) at a 0–20 cm soil depth. While no significant correlation between root biomass and the tree influence index was found on the lower slope, a different pattern was found on the upper slope. Our results indicate that the variation in root biomass and distribution can also be explained by the differences in the soil environment and topographical positions.

Funder

Korea Forest Service

Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3