An Effective Somatic-Cell Regeneration and Genetic Transformation Method Mediated by Agrobacterium tumefaciens for Portulaca oleracea L.

Author:

Xu Mengyun1,Zhao Xinyu1,Fang Jiahui1,Yang Qinwen1,Li Ping1ORCID,Yan Jian1ORCID

Affiliation:

1. Key Laboratory of Agro-Environment in the Tropics, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

Abstract

Purslane (Portulaca oleracea L.) is highly valued for its nutritional, medicinal, and ecological significance. Genetic transformation in plants provides a powerful tool for gene manipulation, allowing for the investigation of important phenotypes and agronomic traits at the genetic level. To develop an effective genetic transformation method for purslane, various organ tissues were used as explants for callus induction and shoot regeneration. Leaf tissue exhibited the highest dedifferentiation and regeneration ability, making it the optimal explant for tissue culture. By culturing on Murashige and Skoog (MS) medium supplemented with varying concentrations of 6-benzyleaminopurine (6-BA) and 1-naphthaleneacetic acid (NAA), somatic cells from leaf explants could be developed into calli, shoots, and roots. The shoot induction results of 27 different purslane accessions elucidated the impact of genotype on somatic-cell regeneration capacity and further confirmed the effectiveness of the culture medium in promoting shoot regeneration. On this basis, a total of 17 transgenic plants were obtained utilizing the genetic transformation method mediated by Agrobacterium. The assessment of GUS staining, hygromycin selection, and polymerase chain reaction (PCR) amplification of the transgenic plants as well as their progeny lines indicated that the method established could effectively introduce foreign DNA into the purslane nucleus genome, and that integration was found to be stably inherited by offspring plants. Overall, the present study demonstrates the feasibility and reliability of the Agrobacterium-mediated genetic transformation method for introducing and integrating foreign DNA into the purslane genome, paving the way for further research and applications in purslane genetic modification.

Funder

National Natural Science Foundation of China

Guangzhou Key R&D Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3