Codon Optimization Enables the Geneticin Resistance Gene to Be Applied Efficiently to the Genetic Manipulation of the Plant Pathogenic Fungus Botrytis cinerea

Author:

Tang Maoyao1,Wang Yangyizhou1,Wang Kexin1,Zhou Yuanhang2,Zhao Enshuang3ORCID,Zhang Hao3ORCID,Zhang Mingzhe1,Yu Hang1,Zhao Xi1,Li Guihua1ORCID

Affiliation:

1. College of Plant Sciences, Jilin University, Changchun 130062, China

2. Research Management Department, Changchun Academy of Forestry, Changchun 130021, China

3. College of Computer Science and Technology, Jilin University, Changchun 130012, China

Abstract

Botrytis cinerea can infect almost all of the important horticultural crops and cause severe economic losses globally every year. Modifying candidate genes and studying the phenotypic changes are among the most effective ways to unravel the pathogenic mechanism of this crop killer. However, few effective positive selection markers are used for B. cinerea genetic transformation, which limits multiple modifications to the genome, especially genes involving redundant functions. Here, we optimized a geneticin resistance gene, BcNPTII, based on the codon usage preference of B. cinerea. We found that BcNPTII can greatly increase the transformation efficiency of B. cinerea under G418 selection, with approximately 30 times higher efficiency than that of NPTII, which is applied efficiently to transform Magnaporthe oryzae. Using the gene replacement method, we successfully knocked out the second gene BOT2, with BcNPTII as the selection marker, from the mutant ΔoahA, in which OAHA was first replaced by the hygromycin resistance gene HPH in a field strain. We obtained the double knockout mutant ΔoahA Δbot2. Our data show that the codon-optimized BcNPTII is an efficient positive selection marker for B. cinerea transformation and can be used for various genetic manipulations in B. cinerea, including field wild-type strains.

Funder

Natural Science Foundation of Jilin Province, China

National Natural Science Foundation of China

National Undergraduate Innovative and Entrepreneurship Training Program, China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3