Identification of Attractants from Three Host Plants and How to Improve Attractiveness of Plant Volatiles for Monochamus saltuarius

Author:

Dong Yifan1,Chen Dongping1,Zhou Siye1,Mao Zhengyi1,Fan Jianting1ORCID

Affiliation:

1. School of Forestry and Biotechnology, National Joint Local Engineering Laboratory for High-Efficient Preparation of Biopesticide, Zhejiang A & F University, Lin’an 311300, China

Abstract

As a new vector insect of pine wood nematodes in China, the Monochamus saltuarius (Coleoptera: Cerambycidae) vectors pine wilt nematodes into healthy pine trees through feeding and oviposition, resulting in huge economic losses to forestry. A promising control strategy is to develop safe and efficient attractants. This study aims to screen for the key active volatiles of Pinus koraiensis (Pinales: Pinaceae), Pinus tabuliformis (Pinales: Pinaceae), and Picea asperata (Pinales: Pinaceae) that can attract M. saltuarius, and to study the synergistic attraction of the main attractant plant volatiles with ethanol and insect aggregation pheromones. The preference of M. saltuarius for three hosts is P. koraiensis > P. tabuliformis > Picea asperata. We detected 18 organic volatiles from three host plants. Through EAG assays and indoor Y-tube behavioral experiments, 3-carene, (-)-camphor, β-pinene, α-phellandrene, terpinolene, α-pinene, D-limonene, and myrcene were screened to have attractive effects on M. saltuarius. We found that 3-carene, β-pinene, and α-pinene are the most attractive kairomones in field experiments, which may play a crucial role in the host localization of M. saltuarius. Ethanol has a synergistic effect on the attractant activity of 3-carene and β-pinene, and the synergistic effect on β-pinene is the best. The mixture of ethanol, 2-undecyloxy-1-ethanol, and ipsdienol can significantly enhance the attraction effect of β-pinene on M. saltuarius. These new findings provide a theoretical basis for the development of attractants for adult M. saltuarius and contribute to the green control of M. saltuarius.

Funder

Central Finance Forestry Science and Technology Demonstration and Promotion Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3