Chitosan from Mushroom Improves Drought Stress Tolerance in Tomatoes

Author:

Demehin Olusoji12,Attjioui Maha12,Goñi Oscar13,O’Connell Shane123ORCID

Affiliation:

1. Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland

2. Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland

3. Brandon Bioscience, Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland

Abstract

Chitosan is a derivative of chitin that is one of the most abundant biopolymers in nature, found in crustacean shells as well as in fungi cell walls. Most of the commercially available chitosans are produced from the exoskeletons of crustaceans. The extraction process involves harsh chemicals, has limited potential due to the seasonal and limited supply and could cause allergic reactions. However, chitosan has been shown to alleviate the negative effect of environmental stressors in plants, but there is sparse evidence of how chitosan source affects this bioactivity. The aim of this study was to investigate the ability of chitosan from mushroom in comparison to crustacean chitosan in enhancing drought stress tolerance in tomato plants (cv. MicroTom). Chitosan treatment was applied through foliar application and plants were exposed to two 14-day drought stress periods at vegetative and fruit set growth stages. Phenotypic (e.g., fruit number and weight), physiological (RWC) and biochemical-stress-related markers (osmolytes, photosynthetic pigments and malondialdehyde) were analyzed at different time points during the crop growth cycle. Our hypothesis was that this drought stress model will negatively impact tomato plants while the foliar application of chitosan extracted from either crustacean or mushroom will alleviate this effect. Our findings indicate that drought stress markedly decreased the leaf relative water content (RWC) and chlorophyll content, increased lipid peroxidation, and significantly reduced the average fruit number. Chitosan application, regardless of the source, improved these parameters and enhanced plant tolerance to drought stress. It provides a comparative study of the biostimulant activity of chitosan from diverse sources and suggests that chitosan sourced from fungi could serve as a more sustainable and environmentally friendly alternative to the current chitosan from crustaceans.

Funder

MTU Kerry

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3