Affiliation:
1. College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
Abstract
Variations in the cadmium (Cd) accumulation and root characteristics of different genotypes of rice during three developmental periods of dry cultivation were investigated in pot experiments in which two levels of Cd were added to the soil (0 and 10 mg kg−1). The results show that the Cd concentration in each organ of the different rice genotypes decreased in both the order of roots > shoots > grains and during the three developmental periods in the order of the maturity stage > booting stage > tillering stage. The lowest bioaccumulation factor (BCF) and translocation factor (TF) were found in Yunjing37 (YJ37) under Cd stress. At maturity, Cd stress inhibited the root length of Dianheyou34 (DHY34) the most and that of Dianheyou 918 (DHY918) the least, also affecting the root volume of DHY34 and Dianheyou615 (DHY615) the most and that of YJ37 and Yiyou 673 (YY673) the least; the inhibition rates were 41.80, 5.09, 40.95, and 10.51%, respectively. The exodermis showed the greatest thickening in YY673 and the lowest thickening in DHY615, while the endodermis showed the opposite result. The rates of change were 16.48, 2.45, 5.10, and 8.49%, respectively. The stele diameter of DHY615 decreased the most, and that of YY673 decreased the least, while the secondary xylem area showed the opposite result; the rates of change were −21.50, −14.29, −5.86, and −26.35%, respectively. Under Cd stress treatment at maturity, iron plaque was extracted using the dithionite–citrate–bicarbonate (DCB) method. The concentration of iron (DCB-Fe) was highest in YJ37, and the concentration of cadmium (DCB-Cd) was lowest in DHY34. YJ37 was screened as a low Cd-accumulating variety. The concentration of available Cd in the rhizosphere soil, iron plaque, root morphology, and anatomy affect Cd accumulation in rice with genotypic differences. Our screening of Cd-accumulating rice varieties provides a basis for the dry cultivation of rice in areas with high background values of Cd in order to avoid the health risks of Cd intake.
Funder
National Natural Science Foundation of China