The Effects of Soil Acidity and Aluminium on the Root Systems and Shoot Growth of Lotus pedunculatus and Lupinus polyphyllus

Author:

Bell Lucy E.1,Moir Jim L.1ORCID,Black Alistair D.1ORCID

Affiliation:

1. Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand

Abstract

Lotus pedunculatus (lotus) and Lupinus polyphyllus (Russell lupin) persist in the upland grasslands of New Zealand, where soil acidity and associated aluminium (Al) toxicity impede conventional pasture legumes. This experiment investigated the response of lotus and Russell lupin to soil acidity and Al. The species were sown in 20 cm tall 1.2 L pots of acidic upland soil. A mass of 4.5 or 6.7 g lime (CaCO3)/L was added to either the top or bottom or both soil horizons (0–9 cm and 9–18 cm), resulting in six treatments across six randomised blocks in a glasshouse. The soil pH was 4.4, 4.9, and 5.4; the exchangeable Al concentrations were 24, 2.5, and 1.5 mg/kg for 0, 4.5, and 6.7 g lime/L. At 16 weeks post-sowing, the plants were divided into shoots and roots at 0–9 cm and 9–18 cm. Root morphology, shoot and root dry matter (DM), shoot nitrogen (N), and nodulation were measured. The total plant DM and shoot-to-root DM ratio were higher, and the shoot %N was lower for the lotus plants than the Russell lupin plants for the various lime rates (13.2 vs. 2.9 g plant−1, 5.6 vs. 1.6, and 2.4 vs. 3.3%, p < 0.05). No response to lime in terms of total DM or total root morphology parameters was exhibited in either species (p > 0.05). Root morphology adjustments in response to acidity between soil horizons were not observed. The results indicated that lotus and Russell lupin are tolerant to high soil acidity (pH 4.4–5.4) and exchangeable Al (1.5–24 mg kg−1), highlighting their considerable adaptation to grasslands with acidic soils.

Funder

Struthers Trust

Graduate Women New Zealand

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3