Shifting Mountain Tree Line Increases Soil Organic Carbon Stability Regardless of Land Use

Author:

Sushko Sofia1ORCID,Ivashchenko Kristina1ORCID,Komarova Alexandra1,Yudina Anna2ORCID,Makhantseva Victoria1,Elsukova Ekaterina3ORCID,Blagodatsky Sergey4ORCID

Affiliation:

1. Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 1422902, Russia

2. V.V. Dokuchaev Soil Science Institute, Moscow 119017, Russia

3. Department of Geoecology, Institute of Earth Sciences, Saint Petersburg State University, Saint-Petersburg 199034, Russia

4. Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674 Cologne, Germany

Abstract

Climate and land use changes are causing trees line to shift up into mountain meadows. The effect of this vegetation change on the partitioning of soil carbon (C) between the labile particulate organic matter (POM–C) and stable mineral-associated organic matter (MAOM–C) pools is poorly understood. Therefore, we assessed these C pools in a 10 cm topsoil layer along forest–meadow ecotones with different land uses (reserve and pasture) in the Northwest Caucasus of Russia using the size fractionation technique (POM 0.053–2.00 mm, MAOM < 0.053 mm). Potential drivers included the amount of C input from aboveground grass biomass (AGB) and forest litter (litter quantity) and their C/N ratios, aromatic compound content (litter quality), and soil texture. For both land uses, the POM–C pool showed no clear patterns of change along forest–meadow ecotones, while the MAOM–C pool increased steadily from meadow to forest. Regardless of land use, the POM–C/MAOM–C ratio decreased threefold from meadow to forest in line with decreasing grass AGB (R2 = 0.75 and 0.29 for reserve and pasture) and increasing clay content (R2 = 0.63 and 0.36 for reserve and pasture). In pastures, an additional negative relationship was found with respect to plant litter aromaticity (R2 = 0.48). Therefore, shifting the mountain tree line in temperate climates could have a positive effect on conserving soil C stocks by increasing the proportion of stable C pools.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3