Modeling Chickpea Productivity with Artificial Image Objects and Convolutional Neural Network

Author:

Bankin Mikhail1ORCID,Tyrykin Yaroslav1,Duk Maria1,Samsonova Maria1,Kozlov Konstantin1ORCID

Affiliation:

1. Mathematical Biology and Bioinformatics Lab, PhysMech Institute, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia

Abstract

The chickpea plays a significant role in global agriculture and occupies an increasing share in the human diet. The main aim of the research was to develop a model for the prediction of two chickpea productivity traits in the available dataset. Genomic data for accessions were encoded in Artificial Image Objects, and a model for the thousand-seed weight (TSW) and number of seeds per plant (SNpP) prediction was constructed using a Convolutional Neural Network, dictionary learning and sparse coding for feature extraction, and extreme gradient boosting for regression. The model was capable of predicting both traits with an acceptable accuracy of 84–85%. The most important factors for model solution were identified using the dense regression attention maps method. The SNPs important for the SNpP and TSW traits were found in 34 and 49 genes, respectively. Genomic prediction with a constructed model can help breeding programs harness genotypic and phenotypic diversity to more effectively produce varieties with a desired phenotype.

Funder

Russian Science Fund

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3