The Effect of Nutrient Deficiencies on the Annual Yield and Root Growth of Summer Corn in a Double-Cropping System

Author:

Wang Chuangyun12,Ma Yankun2,Zhao Rong2,Sun Zheng2,Wang Xiaofen1,Gao Fei2ORCID

Affiliation:

1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

2. College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China

Abstract

The North China Plain has a typical winter wheat–summer corn double-cropping pattern. The effects of nutrient deficiency conditions on the root characteristics and yield of summer corn in the double-cropping system were studied for four years. Long-term monotonous fertilization patterns undermine crop rotation systems and are detrimental to the sustainability of agricultural production. To complement the development of rational fertilization strategies by exploring the response of crop rotation systems to nutrient deficiencies, an experiment was conducted in a randomized complete block design consisting of five treatments with three replicates for each treatment: (1) an adequate supply of nitrogen and phosphate fertilizers and potash-deficient treatment (T1); (2) an adequate supply of nitrogen and potash fertilizers and phosphorus-deficient treatment (T2); (3) an adequate supply of phosphorus and potash fertilizers and nitrogen-deficient treatment (T3); (4) nutrient-sufficient treatment for crop growth (T4); and (5) no-fertilizer treatment (CK). The results showed that different nutrient treatments had significant effects on the root length density (RLD), root surface area density (RSAD), and root dry weight density (RDWD) in summer corn. At the physiological maturity stage (R6), the root indexes of RLD, RSAD, and RDWD were significantly higher in the 0–20 cm soil layer in T4 compared to CK, with an increase of 86.2%, 131.4%, and 100.0%, respectively. Similarly, in the 20–40 cm soil layer, the root indexes of T4 were 85.7%, 61.3%, and 50.0% higher than CK, with varied differences observed in the other nutrient-deficient treatments. However, there was no significant difference among the treatments in the 40–60 cm layer except for T4, whose root index showed a difference. The root fresh weight and root dry matter in T4, T3, T2, and T1 were increased to different degrees compared with CK. In addition, these differences in root indexes affected the annual yield of crops, which increased by 20.96%, 21.95%, and 8.14% in T4, T2, and T1, respectively, compared to CK. The spike number and the number of grains per spike of T4 were 10.8% and 8.3% higher than those of CK, which led to the differences in summer corn yields. The 1000-kernel weight of T4, T2, and T1 were 9.5%, 8.8%, and 7.4% higher than that of CK, whereas the determining nutrient was nitrogen fertilizer, and phosphorus fertilizer had a higher effect on yield than potassium fertilizer. This provides a theoretical basis for the effect of nutrient deficiency conditions on yield stability in a double-cropping system.

Funder

Shanxi Provincial Key R&D Program

Shanxi Province Basic Research Plan

Science and Technology Innovation Project of Higher Education Institutions in Shanxi

Scientific Research Project of Shanxi Doctoral Work Award Fund

Shanxi Province Patent Transformation Special Program Project

Shanxi Province Science and Technology Achievement Transformation Guiding Special Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3