Analysis of the Genotype Interaction of Four-Year-Old Populus euramericana Using the BLUP-GGE Technique

Author:

Liu Ning,Ding Changjun,Li Bo,Ding Mi,Su Xiaohua,Huang Qinjun

Abstract

Poplar is a commercially globalized tree species that provides energy and economic and ecological support. To evaluate the twelve hybrid Populus euramericana genotypes developed in China, a total of six locations were selected for the current study, comprising four climatic types and three kinds of soil. The objective of this study was to characterize the early stages of Populus euramericana growth and to test the locations; to identify good genotypes for stable and high yield; and to offer practical experience and technical assistance for further breeding of Populus euramericana. The main research methods included the statistical description of tree heights and diameter at breast height (DBH), the establishment of a mixed effect model to analyze the genotype and environmental interaction effect (G × E), the use of best linear unbiased prediction (BLUP) values as GGE biplots to achieve visual screening, and the calculation of genetic parameters. Results show that the genotype effect (G), the environmental effect (E), and the G × E interaction is significant; the BLUP value has a strong correspondence with the observed value; the goodness of fit of all biplots can explain more than 85% of the variation; the broad-sense heritability of tree height and DBH is 0.13 and 0.3, respectively; and the type-B correlation is 0.36 and 0.65. In addition, G5, G7, G4, and G9 are excellent genotypes with high yield and stability; using the tree height and DBH of these four genotypes can achieve genetic gains of 3.35% and 0.81%. The conclusions of this study are as follows: the rank-change and scale-effect interactions were distinct; G, E, and G × E all had a significant effect on the growth of poplar trees during their early stage; G4, G5, G7, and G9 genotypes have favorable development characteristics; and N146 is an excellent source of paternal genetics.

Funder

Research Institute of Forestry

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3