Phase Stability and Morphology of Gel Grown Crystals: The Case of CdCl2-bpp Polymeric System

Author:

Lo Presti Leonardo,Moret Massimo,Rizzato SilviaORCID

Abstract

A phenomenological study is carried out on a complex two-component diffusion-reacting system in gel, that is, the Cd-1,3-bis(4-pyridyl)propane (Cd-bpp) coordination polymer. The latter can exist in three solid forms, which exploit a 1:1 correspondence among the Cd/bpp ratio, the crystal structure and the crystal morphology (1/2: bipyramids; 2/3: needles; 1/3: plates). The aim was to clarify the role of key physicochemical variables (reactant concentrations, composition of the solvent and density of the transport medium) in determining the chemical nature and the morphology of the final crystallization products. The gel method was tested in a variety of different crystallization configurations, including single and double diffusion techniques. The density of the gel primarily affects the morphology of the synthesized crystals, with denser media favouring the needle-like 2/3 Cd-bpp species and diluted ones the 1/2 Cd-bpp bipyramidal one. However, higher densities of the gel are generally associated to strained crystals. The solvent composition is also important, as for example the 1/2 Cd-bpp bipyramids require at least a minimum amount of ethanol to appear. We demonstrated that in gel the strict “equality” stoichiometric criteria for metal-to-ligand ratios can be sometimes eluded, as non–equilibrium concentrations can be locally attained. In this respect, the crystallization geometry was proven to act as a key tool to influence the crystallization output, as it determines the direction and magnitude of the concentration gradients. Finally, the use of U tubes to perform one-pot screenings of a large part of the crystallization space is discussed.

Funder

Fondazione Cariplo

Italian Ministry for University and Research (MIUR)

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3