Abstract
We investigate theoretically and experimentally the creation of virtually any polymer-based photonic structure containing individual nonlinear KTiOPO 4 nanoparticles (KTP NPs) using low one-photon absorption (LOPA) direct laser writing (DLW) technique. The size and shape of polymeric microstructures and the position of the nonlinear KTP crystal inside the structures, were perfectly controlled at nanoscale and on demand. Furthermore, we demonstrated an enhancement of the second-harmonic generation (SHG) by a factor of 90 when a KTP NP was inserted in a polymeric pillar. The SHG enhancement is attributed to the resonance of the fundamental light in the cavity. This enhancement varied for different KTP NPs, because of the random orientation of the KTP NPs, which affects the light/matter interaction between the fundamental light and the NP as well as the collection efficiency of the SHG signal. The experimental result are further supported by a simulation model using Finite-Difference Time-Domain (FDTD) method.
Funder
Agence Nationale de la Recherche
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献