Relationship between TIR and NIR-SWIR as Indicator of Vegetation Water Availability

Author:

Holzman Mauro EzequielORCID,Rivas Raúl EduardoORCID,Bayala Martín Ignacio

Abstract

Water availability for vegetation use has been associated with the relative amount of water in the plant and is a key factor for modeling variables related to the soil-plant system (e.g., net primary production, drought effects on vegetation). To the best of our knowledge, the integration of spectral proxies of vegetation water content (near-infrared (NIR), shortwave-infrared (SWIR) bands) and land surface temperature (LST) for estimation, not only of vegetation water content but also soil water available for the evapotranspiration process requires more analysis. This study aims to assess the relationship between NIR, SWIR reflectance, and LST data as indicators of water availability for crop use. For this purpose, vegetation water content, LST, and spectral reflectance over soybean, corn, and barley were measured in the field and the laboratory. Based on the consistency of satellite data from Moderate-Resolution Imaging Spectroradiometer (MODIS/Aqua) in relation to such measurements, a model is proposed, which can be parameterized from remotely sensed NIR-SWIR/LST scatterplots. The obtained results were tested in the Argentine Pampas, showing coherence with surface processes at regional scale associated with soil water availability. The comparison with soil moisture at different depths (R2 > 0.7) showed that the method is sensitive to variations in root zone water availability. Given the reliance of the index on just satellite data, it can be pointed that the potential not only for vegetation water stress analyses but also in the context of hydrological modeling as an input of water availability.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3