Analysis of Seismic Deformation from Global Three-Decade GNSS Displacements: Implications for a Three-Dimensional Earth GNSS Velocity Field

Author:

Ren Yingying,Lian Lizhen,Wang Jiexian

Abstract

With the rapid development of Global Navigation Satellite System (GNSS) technology, the long-term accumulated GNSS observations of global reference stations have provided valuable data for geodesy and geodynamics studies since the 1990s. Acquiring the precise velocity of GNSS stations is very important for the study of global plate movement, crustal deformation, etc. However, the seismic activities nearby some GNSS observation stations may seriously change the station’s motion trajectory. Therefore, our research was motivated to propose a method allowing for station seismic deformation, and apply it to construct an updated global GNSS velocity field. The main contributions of this work included the following. Firstly, we improved the GNSS data processing procedures and seismic data selection strategies to obtain GNSS coordinate time series with mm-level precision (3–5 and 6–8 mm in the horizontal and vertical, respectively) and information of each site impacted by seismic events, which provides necessary input data for further analysis. Secondly, an Integrated Time Series Method (ITSM) concerning the effect of seismic deformation was proposed to model the station’s nonlinear motion accurately. Distinguished with existing studies, all parameters including seismic relaxation time can be simultaneously estimated by ITSM, which improves the accuracy and reliability of GNSS station velocity significantly. Thirdly, to optimize the ITSM-based model, the influences of seismic relaxation time (a. 0.1 × true, b. 10 × true, c. true), parameterization mode (a. Offset + Velocity, b. Offset + Velocity + PSD, c. Offset + Velocity + PSD + Period), and the Post-Seismic Deformation (PSD) model (a. None, b. Exp, c. Log, d. Exp + Log) on results of GNSS time series analyzing were discussed. The results showed that the fitting accuracy of GNSS displacements was better than 5 mm and 10 mm in the horizontal and vertical, respectively. Finally, the global GNSS station velocity field (referred to as GGV2020 hereafter) was refined by ITSM using global GNSS observations and seismic data during 1990–2020. This not only helps interpret plate tectonic motion, establish and maintain a Dynamic Terrestrial Reference Frame (DTRF) but also contributes to better investigating geodynamic processes. GGV2020 results showed that the accuracy of global velocity was better than 1 mm/a, and the averages of Root Mean Square Error (RMSE) were 0.19 mm/a, 0.19 mm/a, and 0.33 mm/a in the north, east, and up direction, respectively. Besides, the RMSE obeys normal distribution. Compared with ITRF2014, there was a difference of about 1–2 mm/a between them due to differences in terms of observation span, processing model, and geodetic technology. Moreover, GGV2020 is expected to enrich and update the existing velocity field products to describe the characteristics of regional crustal movement in more detail, especially in Antarctica.

Funder

Youth Science Fund Project of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. Challenges and opportunities of GNSS reference station network;Jiang;Acta Geod. Cartogr. Sin.,2017

2. Prospect and theory of GNSS coordinate time series analysis;Jiang;Geomat. Inf. Sci. Wuhan Univ.,2018

3. Crustal deformation on the Chinese mainland during 1998–2014 based on GPS data

4. A Study of Rank Defect and Network Effect in Processing the CMONOC Network on Bernese

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3