A Novel Slip Sensory System for Interfacial Condition Monitoring of Steel-Concrete Composite Bridges

Author:

Sadeghi Faraz,Zhu Xinqun,Li Jianchun,Rashidi Maria

Abstract

Steel-concrete composite (SCC) beams are widely employed in bridge decks. The interfacial shear transfer between the top concrete slab and the supporting steel beams significantly affects the overall load carrying capacity and performance of a bridge deck. The inaccessibility of the connection system makes the visual inspection difficult, and the traditional vibration-based methods are insensitive to this type of local damage. In this study, a novel interlayer slip monitoring system has been developed for interfacial condition assessment of SCC beams. The monitoring system is mainly based on the Ultra-flat Industrial Potentiometer Membrane (UIPM). The sensor film that is glued on a steel base is mounted on the concrete slab, and the wiper is installed on the steel beam. The interlayer slip between the concrete slab and steel beam is monitored by the relative displacement between the sensor film and the wiper. An experimental study has been carried out on a 6-m long composite bridge model in the laboratory. In the model, the concrete slab and the steel beams are bolt-connected, and the bolts could be loosened to simulate the defects in the shear connection system. Seven slip sensors are evenly installed along the bridge model. The sensors are calibrated using the testing machine before they are installed on the bridge model. Three damage scenarios are simulated by loosening bolts at different locations. Different loadings are also applied on the bridge to simulate the operational conditions. Undamaged and damaged scenarios have been considered within load increments, and data are collected and interpreted to find out how the slip changes. The results show that this system is reliable and efficient to monitor the interlayer slip for assessing the interface condition of composite structures.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3