Drone-Assisted Confined Space Inspection and Stockpile Volume Estimation

Author:

Alsayed AhmadORCID,Yunusa-Kaltungo AkiluORCID,Quinn Mark K.ORCID,Arvin FarshadORCID,Nabawy Mostafa R. A.ORCID

Abstract

The accuracy of stockpile estimations is of immense criticality to process optimisation and overall financial decision making within manufacturing operations. Despite well-established correlations between inventory management and profitability, safe deployment of stockpile measurement and inspection activities remain challenging and labour-intensive. This is perhaps owing to a combination of size, shape irregularity as well as the health hazards of cement manufacturing raw materials and products. Through a combination of simulations and real-life assessment within a fully integrated cement plant, this study explores the potential of drones to safely enhance the accuracy of stockpile volume estimations. Different types of LiDAR sensors in combination with different flight trajectory options were fully assessed through simulation whilst mapping representative stockpiles placed in both open and fully confined areas. During the real-life assessment, a drone was equipped with GPS for localisation, in addition to a 1D LiDAR and a barometer for stockpile height estimation. The usefulness of the proposed approach was established based on mapping of a pile with unknown volume in an open area, as well as a pile with known volume within a semi-confined area. Visual inspection of the generated stockpile surface showed strong correlations with the actual pile within the open area, and the volume of the pile in the semi-confined area was accurately measured. Finally, a comparative analysis of cost and complexity of the proposed solution to several existing initiatives revealed its proficiency as a low-cost robotic system within confined spaces whereby visibility, air quality, humidity, and high temperature are unfavourable.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3