An Improved Version of the Generalized Laplacian Pyramid Algorithm for Pansharpening

Author:

Addesso PaoloORCID,Restaino RoccoORCID,Vivone GemineORCID

Abstract

The spatial resolution of multispectral data can be synthetically improved by exploiting the spatial content of a companion panchromatic image. This process, named pansharpening, is widely employed by data providers to augment the quality of images made available for many applications. The huge demand requires the utilization of efficient fusion algorithms that do not require specific training phases, but rather exploit physical considerations to combine the available data. For this reason, classical model-based approaches are still widely used in practice. We created and assessed a method for improving a widespread approach, based on the generalized Laplacian pyramid decomposition, by combining two different cost-effective upgrades: the estimation of the detail-extraction filter from data and the utilization of an improved injection scheme based on multilinear regression. The proposed method was compared with several existing efficient pansharpening algorithms, employing the most credited performance evaluation protocols. The capability of achieving optimal results in very different scenarios was demonstrated by employing data acquired by the IKONOS and WorldView-3 satellites.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3