Effect of High-Pressure Torsion Temperatures on the Precipitation and Properties of Cu-Cr Alloy

Author:

Zhang Yu12,Shen Depeng12ORCID,Liu Guoqiang12,Tang Bingtao12

Affiliation:

1. Shandong Institute of Mechanical Design and Research, Jinan 250031, China

2. School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Abstract

This study examines the impact of high-pressure torsion (HPT) processing at various temperatures on the precipitation behavior of Cu-Cr alloys. The introduction of defects through HPT is observed to promote the precipitation of Cr atoms. Unlike the traditional large-scale precipitation that typically occurs around 400 °C, HPT can induce the precipitation of solute atoms even at room temperature. Furthermore, the temperature at which HPT is performed significantly influences the behavior of the precipitated phase during subsequent aging, ultimately affecting the alloy’s overall properties. At elevated temperatures (ETs) and room temperature (RT), Cr atoms tend to aggregate, forming Guinier–Preston (GP) zones or precipitates, which coarsen into incoherent precipitates after annealing. In contrast, when HPT is conducted at liquid nitrogen temperature (LNT), Cr atoms are retained in their original positions, leading to the formation of uniformly distributed, high-density small precipitates post-annealing. This phenomenon results in superior properties for HPT-LNT-treated samples, evidenced by a microhardness of 191.8 ± 3.2 HV and an electrical conductivity of 84.6 ± 1.8% IACS.

Funder

Taishan Industry Leading Talent Project

Shandong Academy of Sciences

Shandong Province science and technology SME innovation ability improvement project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3