Effect of Calcium on the Setting Time and Mechanical Property of a Red Mud–Blast Furnace Slag-Based Geopolymer

Author:

Chen Yuxiang12,Wu Shengping3,Huang Hanhui4,Rao Feng12,Yang Lang12

Affiliation:

1. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China

2. Fujian Provincial Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou 350108, China

3. School of Engineering, Fujian Jiangxia University, Fuzhou 350108, China

4. Department of Civil Engineering, Fujian Chuanzheng Communications College, Fuzhou 350007, China

Abstract

This study aims to compare the effects of three calcium compounds on the workability, setting time and mechanical properties of red mud (RM)–blast furnace slag (BFS)-based geopolymers. The crystalline phase, hydration process and microstructure of RM-BFS-based geopolymers were characterized by X-ray diffraction (XRD), heat evolution, X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM) tests. The results showed that an appropriate amount of calcium compounds can improve the flowability and compressive strength of the geopolymers, but the excessiveness causes a decrease in strength due to rapid hardening. Other than calcium carbonate, both calcium oxide and calcium chloride played important roles in accelerating the setting times of RM-BFS-based geopolymers. The acceleration in the setting times of geopolymers could be attributed to the calcium hydroxide produced by the dissolution of the calcium compounds, which also provides nucleation sites for the geopolymerization reaction. This study gives new insights into the effect of calcium on the setting times and mechanical properties of geopolymers in the geopolymerization process.

Funder

National Natural Science Foundation of China

Industry-University Cooperation Project in Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3