Joint Calibration Method for Robot Measurement Systems

Author:

Wu Lei1ORCID,Zang Xizhe1,Ding Guanwen1ORCID,Wang Chao1ORCID,Zhang Xuehe1ORCID,Liu Yubin1,Zhao Jie1

Affiliation:

1. State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001, China

Abstract

Robot measurement systems with a binocular planar structured light camera (3D camera) installed on a robot end-effector are often used to measure workpieces’ shapes and positions. However, the measurement accuracy is jointly influenced by the robot kinematics, camera-to-robot installation, and 3D camera measurement errors. Incomplete calibration of these errors can result in inaccurate measurements. This paper proposes a joint calibration method considering these three error types to achieve overall calibration. In this method, error models of the robot kinematics and camera-to-robot installation are formulated using Lie algebra. Then, a pillow error model is proposed for the 3D camera based on its error distribution and measurement principle. These error models are combined to construct a joint model based on homogeneous transformation. Finally, the calibration problem is transformed into a stepwise optimization problem that minimizes the sum of the relative position error between the calibrator and robot, and analytical solutions for the calibration parameters are derived. Simulation and experiment results demonstrate that the joint calibration method effectively improves the measurement accuracy, reducing the mean positioning error from over 2.5228 mm to 0.2629 mm and the mean distance error from over 0.1488 mm to 0.1232 mm.

Funder

National Key Research and Development Program of China

Major Research Plan of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3