Unique Interaction between Layered Black Phosphorus and Nitrogen Dioxide

Author:

Zhao Jingjing,Zhang Xuejiao,Zhao Qing,Yu Xue-Feng,Zhang Siyu,Xing Baoshan

Abstract

Air pollution caused by acid gases (NO2, SO2) or greenhouse gases (CO2) is an urgent environmental problem. Two-dimensional nanomaterials exhibit exciting application potential in air pollution control, among which layered black phosphorus (LBP) has superior performance and is environmentally friendly. However, the current interaction mechanism of LBP with hazardous gases is contradictory to experimental observations, largely impeding development of LBP-based air pollution control nanotechnologies. Here, interaction mechanisms between LBP and hazardous gases are unveiled based on density functional theory and experiments. Results show that NO2 is different from other gases, as it can react with unsaturated defects of LBP, resulting in oxidation of LBP and reduction of NO2. Computational results indicate that the redox is initiated by p orbital hybridization between one oxygen atom of NO2 and the phosphorus atom carrying a dangling single electron in a defect’s center. For NO, the interaction mechanism is chemisorption on unsaturated LBP defects, whereas for SO2, NH3, CO2 or CO, the interaction is dominated by van der Waals forces (57–82% of the total interaction). Experiments confirmed that NO2 can oxidize LBP, yet other gases such as CO2 cannot. This study provides mechanistic understanding in advance for developing novel nanotechnologies for selectively monitoring or treating gas pollutants containing NO2.

Funder

National Natural Science Foundation of China

GDAS' Project of Science and Technology Development

Liaoning Province Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3