Naringenin Ultrafine Powder Was Prepared by a New Anti-Solvent Recrystallization Method

Author:

Zhang XiaonanORCID,Huang Yan,Shi Yufei,Chen Mengyu,Zhang Lubin,An Yimin,Liu Zhiwei

Abstract

Raw naringenin directly isolated from plants is significantly limited by its poor dissolution rate and low bioavailability for clinical and in vivo studies. This study reported a method for the preparation of naringenin ultrafine powder (NUP) using a novel anti-solvent recrystallization process; preliminary experiments were conducted using six single-factor experiments. The response surface Box–Behnken (BBD) design was used to optimize the level of factors. The optimal preparation conditions of the DMP were obtained as follows: the feed rate was 40.82 mL/min, the solution concentration was 20.63 mg/mL, and the surfactant ratio was 0.62%. The minimum average particle size was 305.58 ± 0.37 nm in the derived optimum conditions. A scanning electron microscope was used to compare and analyze the appearance and morphology of the powder before and after preparation. The characterization results of FTIR, TG and XRD showed that no chemical change occurred in the powder before and after preparation. Through the simulated gastrointestinal juice digestion experiment, it was confirmed that the absorption rate of NUP was 2.96 times and 4.05 times higher than raw naringenin, respectively. Therefore, the results showed that the reduction in the particle size through the use of low-speed recrystallization could improve the absorption rate and provided a feasible approach for the further applications.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3