Numerical Study of 3D MHD Mixed Convection and Entropy Generation in Trapezoidal Porous Enclosure Filled with a Hybrid Nanofluid: Effect of Zigzag Wall and Spinning Inner Cylinder

Author:

Maneengam ApichitORCID,Bouzennada Tarek,Abderrahmane AissaORCID,Ghachem KaoutherORCID,Kolsi LiouaORCID,Younis ObaiORCID,Guedri KamelORCID,Weera WajareeORCID

Abstract

A numerical study was performed to analyze the impact of the combination of several factors on heat transfer rate, flow behavior, and entropy generation in a hybrid nanofluid occupying a porous trapezoid enclosure containing a rotating inner tube. The governing equations were discretized and solved using the Finite Element Method using Comsol multiphysics. The effects of the Darcy and Hartman number, nanoparticle volume fraction (from 0 to 6%), the utilization of various zigzag patterns of the hot wall, and the rotation speed of the inner tube (Ω = 100. 250 and 500) are illustrated and discussed in this work. The outputs reveal that flow intensity has an inverse relationship with Hartman number and a direct relationship with the Darcy number and the velocity of the inner tube, especially at high numbers of undulations of the zigzag hot wall (N = 4); also, intensification of heat transfer occurs with increasing nanoparticle volume fraction, Darcy number and velocity of the inner tube. In addition, entropy generation is strongly affected by the mentioned factors, where increasing the nanoparticle concentration augments the thermal entropy generation and reduces the friction entropy generation; furthermore, the same influence can be obtained by increasing the Hartman number or decreasing the Darcy number. However, the lowest entropy generation was found for the case of Ø = 0, Ha = 0 and Da = 0.01.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3