Author:
Zhang Wenlei,Yin Hongwei,Yu Zhichao,Jia Xiaoxia,Liang Jianguo,Li Gang,Li Yan,Wang Kaiying
Abstract
Metal-organic frameworks (MOFs) have attracted significant research interest for supercapacitor applications due to their high-tunable conductivity and their structure’s pore size. In this work, we report a facile one-step hydrothermal method to synthesize nickel-based metal-organic frameworks (MOF) using organic linker 4,4′-biphenyl dicarboxylic acid (BPDC) for high-performance supercapacitors. The pore size of the Ni-BPDC-MOF nanostructure is tuned through different synthesization temperatures. Among them, the sample synthesized at 180 °C exhibits a nanoplate morphology with a specific surface area of 311.99 m2·g−1, a pore size distribution of 1–40 nm and an average diameter of ~29.2 nm. A high specific capacitance of 488 F·g−1 has been obtained at a current density of 1.0 A·g−1 in a 3 M KOH aqueous electrolyte. The electrode shows reliable cycling stability, with 85% retention after 2000 cycles. The hydrothermal process Ni-BPDC-MOF may provide a simple and efficient method to synthesize high-performance hybrid MOF composites for future electrochemical energy storage applications.
Funder
National Natural Science Foundation of China
Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China
Subject
General Materials Science,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献