Author:
Li Dong,Wu Fachao,Gao Caiyun,Shen Hongfang,Han Fei,Han Fenglan,Chen Zhanlin
Abstract
In this work, a highly efficient wide-visible-light-driven photoanode, namely, nitrogen and sulfur co-doped tungsten trioxide (S-N-WO3), was synthesized using tungstic acid (H2WO4) as W source and ammonium sulfide ((NH4)2S), which functioned simultaneously as a sulfur source and as a nitrogen source for the co-doping of nitrogen and sulfur. The EDS and XPS results indicated that the controllable formation of either N-doped WO3 (N-WO3) or S-N-WO3 by changing the nW:n(NH4)2S ratio below or above 1:5. Both N and S contents increased when increasing the nW:n(NH4)2S ratio from 1:0 to 1:15 and thereafter decreased up to 1:25. The UV-visible diffuse reflectance spectra (DRS) of S-N-WO3 exhibited a significant redshift of the absorption edge with new shoulders appearing at 470–650 nm, which became more intense as the nW:n(NH4)2S ratio increased from 1:5 and then decreased up to 1:25, with the maximum at 1:15. The values of nW:n(NH4)2S ratio dependence is consistent with the cases of the S and N contents. This suggests that S and N co-doped into the WO3 lattice are responsible for the considerable redshift in the absorption edge, with a new shoulder appearing at 470–650 nm owing to the intrabandgap formation above the valence band (VB) edge and a dopant energy level below the conduction band (CB) of WO3. Therefore, benefiting from the S and N co-doping, the S-N-WO3 photoanode generated a photoanodic current under visible light irradiation below 580 nm due to the photoelectrochemical (PEC) water oxidation, compared with pure WO3 doing so below 470 nm.
Funder
Natural Science Foundation of Ningxia Province
Scientific Research Project of Ningxia Colleges and Universities
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献