Controlling the Deposition Process of Nanoarchitectonic Nanocomposites Based on {Nb6−xTaxXi12}n+ Octahedral Cluster-Based Building Blocks (Xi = Cl, Br; 0 ≤ x ≤ 6, n = 2, 3, 4) for UV-NIR Blockers Coating Applications

Author:

Lebastard Clément,Wilmet Maxence,Cordier StéphaneORCID,Comby-Zerbino Clothilde,MacAleese LukeORCID,Dugourd Philippe,Hara ToruORCID,Ohashi NaokiORCID,Uchikoshi TetsuoORCID,Grasset FabienORCID

Abstract

The antagonism between global energy needs and the obligation to slow global warming is a current challenge. In order to ensure sufficient thermal comfort, the automotive, housing and agricultural building sectors are major energy consumers. Solar control materials and more particularly, selective glazing are part of the solutions proposed to reduce global energy consumption and tackle global warming. In this context, these works are focused on developing new highly ultraviolet (UV) and near-infrared (NIR) absorbent nanocomposite coatings based on K4[{Nb6-xTaxXi12}Xa6]. (X = Cl, Br, 0 ≤ x ≤ 6) transition metal cluster compounds. These compounds contain cluster-based active species that are characterized by their strong absorption of UV and NIR radiations as well as their good transparency in the visible range, which makes them particularly attractive for window applications. Their integration, by solution processes, into a silica-polyethylene glycol or polyvinylpyrrolidone matrices is discussed. Of particular interest is the control and the tuning of their optical properties during the integration and shaping processes. The properties of the solutions and films were investigated by complementary techniques (UV-Vis-NIR spectrometry, ESI-MS, SEM, HRTEM, etc.). Results of these works have led to the development of versatile solar control coatings whose optical properties are competitive with commercialized material.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3