Classification of Amino Acids Using Hybrid Terahertz Spectrum and an Efficient Channel Attention Convolutional Neural Network

Author:

Wang BoORCID,Qin Xiaoling,Meng Kun,Zhu Liguo,Li Zeren

Abstract

Terahertz (THz) spectroscopy is the de facto method to study the vibration modes and rotational energy levels of molecules and is a widely used molecular sensor for non-destructive inspection. Here, based on the THz spectra of 20 amino acids, a method that extracts high-dimensional features from a hybrid spectrum combined with absorption rate and refractive index is proposed. A convolutional neural network (CNN) calibrated by efficient channel attention (ECA) is designed to learn from the high-dimensional features and make classifications. The proposed method achieves an accuracy of 99.9% and 99.2% on two testing datasets, which are 12.5% and 23% higher than the method solely classifying the absorption spectrum. The proposed method also realizes a processing speed of 3782.46 frames per second (fps), which is the highest among all the methods in comparison. Due to the compact size, high accuracy, and high speed, the proposed method is viable for future applications in THz chemical sensors.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3